2025 Annual Water Quality Report (Testing Performed January through December 2024)

Fort Payne Water Works Board

PWSID # AL0000509 153 20th Street NE Fort Payne, AL 35967 Phone: 256-845-0449 Emergency & After hours: 256-845-7248 www.fortpaynewater.com

The Fort Payne Water Board is proud to report to the public the quality of water we have distributed in the past year. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water.

Este informe contiene informacion muy importante sobre la calidad de su agua beber. Traduscalo o hable con alguien que lo entienda bien.

Water Source	Allen Branch Reservoir and Big Wills Creek Reservoir					
Number of Customers	~ 8,870 service connections (population served	~ 8,870 service connections (population served ~ 29,100)				
Water Storage	Nine finished water tanks and two raw water ta	nks				
Treatment Techniques		Disinfection, coagulation, settling, granule-activated carbon filtration Fluoride is added to the finished water to promote dental health				
Interconnections	Northeast Alabama Water District for wholesale	e if needed				
	Terry Camp, Chairman	Wade Hill, Member				
Water Board	Dana Goggans, Vice Chairman	Steve Malcom, Member				
	Tony Dobbs, Secretary					
	Brandon Light, Executive Director	Derrick Templeton, Distribution Supervisor				
Management Team	Deanna Frasier, Office Manager	Ezra Dean, Water Plant Manager				
	Nick Lea, Assistant Manager					

Source Water Protection

In compliance with the Alabama Department of Environmental Management (ADEM), **The Fort Payne Water Board** has developed a Source Water Assessment plan that will assist in protecting our water sources. This plan provides additional information such as potential sources of contamination. The susceptibility to each contaminant was evaluated and determined jointly with representatives from ADEM and the Fort Payne Water Works Board. Review of all three sources resulted in a Low Susceptibility Rating. The Source Water Assessment was updated in 2021 and will be updated every 4 years. The public can review this document at the Fort Payne Water Board main office. Copies may be obtained for a small reproduction fee.

Please help us make these efforts worthwhile by doing what you can to protect our source water. Please call in any leaks you observe and keep a close eye on any suspicious activities if they occur around your water system. The Fort Payne Water Board is continuously working for our customers to improve the safety of the water. We have also been replacing old infrastructure throughout the system so our customers can rely on having clean water from the water treatment facility straight to the tap.

Information about Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Your water system is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking.

Use *only* water from the cold-water tap for drinking, cooking, and especially for making baby formula. Hot water is likely to contain higher levels of lead. The two actions recommended above are very important to the health of your family. They will probably be effective in reducing lead levels because most of the lead in household water usually comes from the plumbing in your house, not from the local water supply. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water hotline or at www.epa.gov/safewater.

General Information

All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. MCL's, defined in a List of Definitions in this report, are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material, and it can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water run-off, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, storm water run-off, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial
 processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic
 systems.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the levels of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. People at risk should seek advice about drinking water from their health care providers.

Based on a study conducted by ADEM with the approval of the EPA a statewide waiver for the monitoring of asbestos and dioxin was issued. Thus, monitoring for these contaminants was not required.

Your source water is tested for pathogens, such as *Cryptosporidium* and *Giardia*. These pathogens can enter the water from animal or human waste. For people who may be immuno-compromised, a guidance document developed jointly by the Environmental Protection Agency and the Center for Disease Control is available online at *www.epa.gov/safewater* or from the Safe Drinking Water Hotline at 800-426-4791. *Cryptosporidium* and *Giardia* have not been detected in our finished drinking water.

Questions?

Fort Payne Water will be able to cover and fix any problems that may arise in all areas of our system. Please contact Fort Payne Water at 256-845-0449 during business hours for any billing questions or issues. For after hours emergencies call 256-845-7248. We want our valued customers to be informed about their water quality and the services provided by Fort Payne Water. If you want to learn more, please call our water office or attend any of our regularly scheduled meetings. The Fort Payne Water Board meets the first Thursday of each month at 12:00 noon at 153 20th St NE in Fort Payne.

More information about contaminants to drinking water and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at (1-800-426-4791).

Monitoring Schedule and Results

Fort Payne Water Works Board *routinely* monitors for constituents in your drinking water according to Federal and State laws. This report contains results from the most recent monitoring which was performed in accordance with the regulatory schedule. The Alabama Department of Environmental Management (ADEM) allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently.

Based on a study conducted by ADEM with the approval of the EPA a statewide waiver for the monitoring of asbestos and dioxin was issued. Thus, monitoring for these contaminants was not required.

Constituents Monitored	Date Monitored
Inorganic Contaminants	2024
Lead/Copper	2024
Microbiological Contaminants	current
Nitrates	2024
Radioactive Contaminants	2021
Synthetic Organic Contaminants (including herbicides and pesticides)	2020
Volatile Organic Contaminants	2020
Disinfection Byproducts	2024
UCMR5 Contaminants	2023-2025
PFAS Contaminants	2024

We are pleased to report that our drinking water meets or exceeds federal and state requirements. We have learned through our monitoring and testing that some constituents have been detected. The table below shows only those contaminants that were detected in the water.

DETECTED DRINKING WATER CONTAMINANTS							
Contaminants	Violation Y/N	Levels Detected	Unit Msmt	MCLG	MCL	Likely Source of Contamination	
Chlorine	NO	0.98-2.96	ppm	MRDLG=4	MRDL=4	Water additive used to control microbes	
Turbidity	NO	0.086	NTU	n/a	TT	Soil runoff	
Total coliform bacteria	NO	0	Present/ Absent	0	presence in 5% of monthly samples	Naturally present in the environment; used as an indicator that other bacteria may be present	
Barium	NO	0.017	ppm	2	2	Drilling and metal refinery discharge; erosion	
Copper	NO	<0.0005	ppm	1.3	AL=1.3	Household plumbing corrosion; erosion; wood preservative leaching	
Fluoride	NO	044	ppm	4	4	Erosion of natural deposits; water additive for teeth; fertilizer and aluminum factory discharge	
Nitrate (as Nitrogen)	NO	0.62	ppm	10	10	Fertilizer runoff; septic and sewage leaching; erosion	
TTHM [Total trihalomethanes]	NO	.0659	ppb	0	80	By-product of drinking water chlorination	
HAA5 [Total haloacetic acids]	NO	.0179	ppb	0	60	By-product of drinking water chlorination	
Unregulated Contaminants							
Chloroform	NO	48.6	ppb	70	n/a	Naturally occurring in the environment or as a result of industrial discharge or agricultural runoff	
Bromodichloromethane	NO	0.007	ppb	0	n/a	Naturally occurring in the environment or as a result of industrial discharge or agricultural runoff	
Secondary Contaminants			•			<u> </u>	
Aluminum	NO	0.01	ppm	n/a	0.2	Erosion of natural deposits or as a result of treatment with water additives	
Chloride	NO	8.8	ppm	n/a	250	Naturally occurring in the environment or as a result of agricultural runoff	
Hardness	NO	141	ppm	n/a	n/a	Naturally occurring in the environment or as a result of treatment with water additives	
рН	NO	9.1	S.U.	n/a	n/a	Naturally occurring in the environment or as a result of treatment with water additives.	
Sodium	NO	6.27	ppm	n/a	n/a	Naturally occurring in the environment	
Sulfate	NO	3.6	ppm	n/a	250	Naturally occurring in the environment; erosion of natural deposits	
Total Dissolved Solids	NO	108	ppm	n/a	500	Naturally occurring in the environment or as a result of industrial discharge or agricultural runoff	

Definitions

Action Level- the concentration of a contaminant that, if exceeded, triggers treatment or other requirements for a water system.

ADEM- Alabama Department of Environmental Management.

AWPCA- Alabama Water and Pollution Control Association.

Coliform Absent (ca)- Laboratory analysis indicates that the contaminant is not present.

Disinfection byproducts (DBPs)- are formed when disinfectants used in water treatment plants react with bromide and/or natural organic matter present in the source water. Disinfection byproducts for which regulations have been established include trihalomethanes (TTHM), haloacetic acids (HAA5), bromate, and chlorite.

Distribution System Evaluation (DSE)-a four quarter study conducted by water systems to identify distribution system locations with high concentrations of trihalomethanes (THMs) and haloacetic acids (HAAs).

EPA- Environmental Protection Agency.

Maximum Contaminant Level-(mandatory language) The Maximum Allowed (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal-(mandatory language) The Goal (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL)-the highest level of a disinfectant allowed in drinking water

Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Micrograms per liter (ug/L) – Equivalent to <u>parts per billion</u> (<u>ppb</u>) since one liter of <u>water</u> is equal in weight to one billion micrograms.

Milligrams per liter (mg/L) – Equivalent to parts per million

Millirems per year (mrem/yr)-measure of radiation absorbed by the body.

Nephelometric Turbidity Unit (NTU)-a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Non-Detects (ND)- laboratory analysis indicates that the constituent is not present above detection limits of lab equipment. **Parts per billion** (ppb) or Micrograms per liter (μ g/I)-one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Parts per million (ppm) or Milligrams per liter (mg/l)-one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per quadrillion (ppq) or Picograms per liter (picograms/l)-one part per quadrillion corresponds to one minute in 2,000,000,000 years, or a single penny in \$10,000,000,000.

Parts per trillion (ppt) or Nanograms per liter (nanograms/l)-one part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000.

Picocuries per liter (pCi/L)-picocuries per liter is a measure of the radioactivity in water.

RAA–Running annual average

Running Annual Average (RAA)-yearly average of results at each specific sampling site.

Standard Units (S.U.)-pH of water measures the water's balances of acids and bases and is affected by temperature and carbon dioxide gas. Water with less than 6.5 could be acidic, soft, and corrosive. A pH greater than 8.5 could indicate that the water is hard.

Treatment Technique (TT)- a required process intended to reduce the level of a contaminant in drinking water.

Variances & Exemptions (V&E)-State or EPA permission not to meet an MCL or a treatment technique under certain conditions.

At the end of this report is the *Standard List of Primary Drinking Water Contaminants*, plus some Secondary and Unregulated contaminants for which our water system routinely monitors. These contaminants were *not* detected in your drinking water unless they are listed in the *Table of Detected Drinking Water Contaminants*.

STAN	DARD LIST	OF PRIMARY	DRINKING WATER CONTAIN	MINANTS	
Contaminant	MCL	Unit of Msmt	Contaminant	MCL	Unit of Msmt
Bacteriological Contaminants			trans-1,2-Dichloroethylene	100	ppb
Total Coliform Bacteria	<5%	present/absent	Dichloromethane	5	ppb
Fecal Coliform and E. coli	0	present/absent	1,2-Dichloropropane	5	ppb
Turbidity Cryptosporidium	TT	NTU Calc.organisms/l	Di (2-ethylhexyl)adipate	400	ppb
Radiological Contaminants		Calc.organisms/i	Di (2-ethylhexyl)phthalate Dinoseb	7	ppb ppb
Beta/photon emitters	4	mrem/yr	Dioxin [2,3,7,8-TCDD]	30	ppg
Alpha emitters	15	pCi/l	Diquat	20	ppb
Combined radium	5	pCi/l	Endothall	100	ppb
Uranium	30	pCi/l	Endrin	2	ppb
Inorganic Chemicals			Epichlorohydrin	TT	TT
Antimony	6	ppb	Ethylbenzene	700	ppb
Arsenic Asbestos	10 7	ppb MFL	Ethylene dibromide Glyphosate	50 700	ppt
Barium	2	ppm	Heptachlor	400	ppb ppt
Beryllium	4	pph	Heptachlor epoxide	200	ppt
Cadmium	5	ppb	Hexachlorobenzene	1	ppb
Chromium	100	ppb	Hexachlorocyclopentadiene	50	ppb
Copper	AL=1.3	ppm	Lindane	200	ppt
Cyanide	200	ppb	Methoxychlor	40	ppb
Fluoride	4	ppm	Oxamyl [Vydate]	200	ppb
Lead	AL=15	ppb	Polychlorinated biphenyls	0.5	ppb
Mercury Nitrate	10	ppb	Pentachlorophenol Picloram	1 500	ppb ppb
Nitrite	10	ppm ppm	Simazine	4	ppb
Selenium	.05	ppm	Styrene	100	ppb
Thallium	.002	ppm	Tetrachloroethylene	5	ppb
Organic Contaminants	•		Toluene	1	ppm
2,4-D	70	ppb	Toxaphene	3	ppb
Acrylamide	TT	TT	2,4,5-TP(Silvex)	50	ppb
Alachlor	2	ppb	1,2,4-Trichlorobenzene	.07	ppm
Benzene [DALIe]	5 200	ppb	1,1,1-Trichloroethane	200	ppb
Benzo(a)pyrene [PAHs] Carbofuran	40	ppt ppb	1,1,2-Trichloroethane Trichloroethylene	5 5	ppb ppb
Carbon tetrachloride	5	ppb	Vinyl Chloride	2	ppb
Chlordane	2	ppb	Xylenes	10	ppm
Chlorobenzene	100	ppb	Disinfectants & Disinfection Byprod	lucts	
Dalapon	200	ppb	Chlorine	4	ppm
Dibromochloropropane	200	ppt	Chlorine Dioxide	800	ppb
1,2-Dichlorobenzene	1000	ppb	Chloramines	4	ppm
1,4-Dichlorobenzene (para) o-Dichlorobenzene	75 600	ppb	Bromate Chlorite	10	ppb
1,2-Dichloroethane	5	ppb ppb	HAA5 [Total haloacetic acids]	60	ppm ppb
1,1-Dichloroethylene	7	ppb	TTHM [Total trihalomethanes]	80	ppb
cis-1,2-Dichloroethylene	70	ppb	· · · · · · · · · · · · · · · · · · ·		PP-2
		LIST OF SECO	NDARY CONTAMINANTS	·	•
Alkalinity, Total (as CA, Co ₃)	Copper		Manganese	Specific Cor	nductance
Aluminum	Corrosivity		Odor	Sulfate	
Calcium, as Ca	Foaming age	ents (MBAS)	Nickel	Total Dissol	ved Solids
Carbon Dioxide	Hardness		pH Silver	Zinc	
Chloride Color	Iron Magnesium		Silver Sodium		
Color	Iviagnesium	LIST OF UNREG	ULATED CONTAMINANTS		
Aldicarb	Chloroethane		Hexachlorobutadiene	Propachlor	
Aldicarb Sulfone	Chloroform		3-Hydroxycarbofuran	N-Propylber	zene
Aldicarb Sulfoxide	Chlorometha		Isoprpylbenzene	Propachlor	
Aldrin	O-Chlorotolu		p-Isopropyltoluene		achloroethane
Bromoacetic Acid	P-Chlorotolu		M-Dichlorobenzene		achloroethane
Bromobenzene	Dibromochlo		Methomyl	Tetrachloroe	
Bromochloromethane Bromodichloromethane	Dibromomett		Methomyl Methylene chloride	Trichloroace	
Bromodichloromethane Bromoform	1,1-Dichloro		Methyl tert-butyl ether	1,2,3-Trichlorobenzene Trichloroethene	
Bromomethane	2,2-Dichloro		Metolachlor	Trichlorofluoromethane	
Butachlor	1,1-Dichloro		Metribuzin	1,2,3-Trichlo	
N-Butylbenzene	1,3-Dichloro		MTBE	1,2,4-Trimet	
Sec-Butylbenzene	Dicamba		Naphthalene	1,3,5-Trimet	hylbenzene
Tert - Butylbenzene	Dichlorodiflu	oromethane	1-Naphthol		·
Carbaryl	Dieldrin		Paraquat		

UCMR5: Every five years the EPA issues a new list of unregulated contaminants to be monitored by some public water systems (PWSs). The monitoring results may provide a basis for future regulatory actions to protect public health. The Fifth Unregulated Contaminant Monitoring Rule (UCMR5) required PWSs serving more than 10,000 people to monitor for 30 unregulated contaminants over a three-year span, 2023 - 2025. The following table shows the UCMR5 contaminants for which we tested and the results of our monitoring.

Unregulated Contaminant Rule 5 (UCMR5) Contaminants					
Contaminant	Unit Measurement	Level Detected			
Lithium	μg/L	<9.00			

PFAS: The U.S. Environmental Protection Agency (EPA) has not yet established primary drinking water MCLs for PFAS substances. Below is a list of PFAS contaminants for which our system monitored in 2022 and the results of that monitoring. *PFAS was not detected in our drinking water.*

PFAS CONTAMINANTS						
Contaminant	Unit Msmt	Level Detected	Contaminant	Unit Msmt	Level Detected	
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid	ppb	ND	Perfluoroheptanoic acid	ppb	ND	
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid	ppb	ND	Perfluorohexanesulfonic acid	ppb	ND	
4,8-dioxa-3H-perfluorononanoic acid	ppb	ND	Perfluorononanoic acid	ppb	ND	
Hexafluoropropylene oxide dimer acid	ppb	ND	Perfluorooctanesulfonic acid	ppb	ND	
N-ethylperfluorooctanesulfonamidoacetic acid	ppb	ND	Perfluorooctanoic acid	ppb	ND	
N-methylperfluorooctanesulfonamidoacetic acid	ppb	ND	Perfluorotetradecanoic acid	ppb	ND	
Perfluorobutanesulfonic acid	ppb	ND	Perfluorotridecanoic acid	ppb	ND	
Perfluorodecanoic acid	ppb	ND	Perfluoroundecanoic acid	ppb	ND	
Perfluorohexanoic acid	ppb	ND	Total PFAS	ppb	ND	
Perfluorododecanoic acid	ppb	ND				

For more information on PFAS contaminants, please refer to www.epa.gov/pfas.

Analyte	Result Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid (PFBA)	<0.0050	0.0050	ug/L	01/16/24 10:2	01/17/24 10:33	
Perfluoropentanoic acid (PFPeA)	<0.0030	0.0030	ug/L	01/16/24 10:2	1 01/17/24 10:33	
Perfluorohexanoic acid (PFHxA)	<0.0030	0.0030	ug/L	01/16/24 10:2	1 01/17/24 10:33	
Perfluoroheptanoic acid (PFHpA)	<0.0030	0.0030	ug/L	01/16/24 10:2	1 01/17/24 10:33	
Perfluorooctanoic acid (PFOA)	<0.0040	0.0040	ug/L	01/16/24 10:2	1 01/17/24 10:33	
Perfluorononanoic acid (PFNA)	<0.0040	0.0040	ug/L	01/16/24 10:2	1 01/17/24 10:33	•
Perfluorodecanoic acid (PFDA)	<0.0030	0.0030	ug/L	01/16/24 10:2	1 01/17/24 10:33	
Perfluoroundecanoic acid (PFUnA)	<0.0020	0.0020	ug/L	01/16/24 10:2	1 01/17/24 10:33	•
Perfluorododecanoic acid (PFDoA)	<0.0030	0.0030	ug/L	01/16/24 10:2	1 01/17/24 10:33	•
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	<0.0030	0.0030	ug/L	01/16/24 10:2	1 01/17/24 10:33	
Perfluorobutanesulfonic acid (PFBS)	<0.0030	0.0030	ug/L	01/16/24 10:2	1 01/17/24 10:33	
Perfluorohexanesulfonic acid (PFHxS)	<0.0030	0.0030	ug/L	01/16/24 10:2	1 01/17/24 10:33	
Perfluoroheptanesulfonic acid (PFHpS)	<0.0030	0.0030	ug/L	01/16/24 10:2	1 01/17/24 10:33	,
Perfluorooctanesulfonic acid (PFOS)	<0.0040	0.0040	ug/L	01/16/24 10:2	1 01/17/24 10:33	•
Perfluoropentanesulfonic acid (PFPeS)	<0.0040	0.0040	ug/L	01/16/24 10:2	1 01/17/24 10:33	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	<0.0050	0.0050	ug/L	01/16/24 10:2	1 01/17/24 10:33	•
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	<0.0020	0.0020	ug/L		1 01/17/24 10:33	•
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	<0.0050	0.0050	ug/L		1 01/17/24 10:33	
1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2 FTS)	<0.0030	0.0030	ug/L		1 01/17/24 10:33	•
1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2 FTS)	<0.0050	0.0050	ug/L		1 01/17/24 10:33	•
1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2 FTS)	<0.0050	0.0050	ug/L		1 01/17/24 10:33	
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	<0.0200	0.0200	ug/L		1 01/17/24 10:33	•
Perfluoro-3-methoxypropanoic acid (PFMPA)	<0.0040	0.0040	ug/L		1 01/17/24 10:33	•
Perfluoro-4-methoxybutanoic acid (PFMBA)	<0.0030	0.0030	ug/L	01/16/24 10:2	1 01/17/24 10:33	
Perfluoro (2-ethoxyethane) sulfonic acid (PFEESA)	<0.0030	0.0030	ug/L	01/16/24 10:2	1 01/17/24 10:33	•

.....

.....